

DIRECCIÓN ACADÉMICA DEPARTAMENTO DE MATEMÁTICA

Respeto – Responsabilidad – Resiliencia – Tolerancia

GUÍA N°1 Números Racionales"
Curso 2° Fecha://2020
racionales.

<u>Estimado(a) Estudiante</u>: para apoyar tu estudio desde casa, tus profesores(as) de Matemática han preparado guías de apoyo, buscado link con videos en YouTube y un correo electrónico para atender consultas.

Instrucciones:

- 1. Lee la información que contiene la guía y de ser necesario observa el material de apoyo.
- 2. Imprime y desarrolla, si no puedes imprimirla responde cada pregunta en tu cuaderno.
- 3. Ante cualquier consulta, enviar un correo a <u>matematicacestarosa@gmail.com</u> indicando nombre, curso y la consulta.

A continuación, reconocerás algunos conjuntos numéricos estudiados anteriormente con el fin de reconocer los Números Racionales:

- Los números naturales (N) se representan por: N = (1,2,3,...)
- Los números enteros (Z) se representan por: Z = (..., -2, -1, 0, 1, 2, ...)
- Los números racionales (Q) se representan por: $Q = \left\{ \frac{a}{b} \ tal \ que \ a, b \in Z, b \neq 0 \right\}$ es decir, está formado por una fracción donde numerador y denominador son números enteros, y además su denominador no es igual a 0.

Los Números Racionales pueden expresarse en decimales, además de las fracciones, pudiendo transformarse de las siguientes maneras:

✓ Fracciones a Decimales: Para transformar fracciones en decimales, debemos dividir el numerador entre el denominador de la fracción.

Ejemplo:
$$\frac{5}{4} = 5 : 4 = 1,25$$

Ahora bien, al realizar la división podemos obtener los siguientes tipos de decimales:

Decimal Finito: Es aquel cuyo fin puede establecerse, que tiene un límite. Ejemplo: 1,25

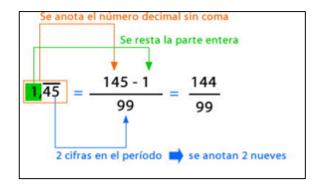
Decimal Infinito: Es aquel que no tiene fin, es decir, no tiene un límite. Ejemplo: 1,2525252525...

Estos decimales infinitos además pueden ser periódicos o semiperiódicos, cuya diferencia se observa en los números después de la coma que se repiten

Decimal Infinito Periódico: $\frac{8}{3} = 8 : 3 = 2,\overline{6} = 2,666666666666...$

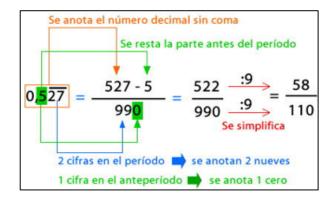
Decimal Infinito Semiperiódico: $\frac{37}{15} = 37 : 15 = 2,4\overline{6} = 2,4666666666...$

Link de apoyo: https://www.youtube.com/watch?v=PZOgxa-gJ90


✓ Decimales a Fracciones: Para transformar decimales a fracciones debemos considerar los casos en los tipos de decimales.

<u>Decimal Finito</u>: Para transformar un decimal finito a fracción, se escribe en el numerador de la fracción el número decimal sin coma, y como denominador la unidad seguida de tantos ceros como cifras decimales tenga el número decimal, por último se simplifica si es posible.

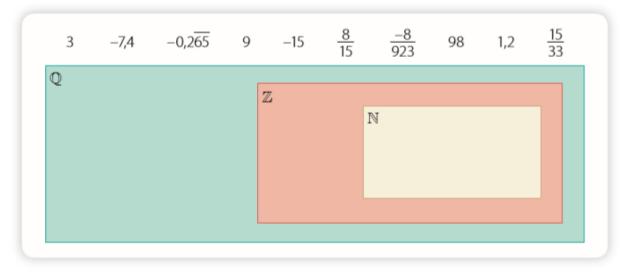
Ejemplo: $0.045 = \frac{45}{1000} = \frac{9}{200}$ link de apoyo: <u>https://www.youtube.com/watch?v=JSs9ycdiZRE&t=114s</u>


Decimal Infinito Periódico: Se debe escribir en el numerador el número decimal sin la coma menos lo que está antes del período, en este caso es la parte entera, y en el denominador tantos nueves como cifras tenga el período

Ejemplo:

Decimal Infinito Semiperiódico: Para transformar un decimal semiperiódico a fracción común debemos escribir en el numerador el numero decimal sin la coma menos lo que está antes del período (anteperíodo + parte entera), y en el denominador se escribe tantos nueves como cifras tiene el período, además seguido a los nueves agregas tantos ceros como cifras tenga el anteperíodo.

Ejemplo:



Actividad N°1:

1. Anota ∈ si el número pertenece al conjunto numérico, en caso contrario anota ∉ (no pertenece).

b. $-\frac{2}{7}$ \mathbb{Z}

2. Observa el siguiente diagrama. Luego, ubica en el conjunto numérico correspondiente.

Actividad N°2:

1. Representa cada fracción en forma decimal e indica el nombre que recibe.

a) $\frac{7}{11}$	c) $\frac{21}{8}$
b) $7\frac{2}{3}$	d) $-\frac{4}{45}$

2. Representa como un número racional de forma fraccionaria. Luego simplifique.

a) 5, 21 =	e) 1,35 =
b) $4, \overline{3} =$	$f) -3, 0\overline{12} =$
$c) -0, \overline{09} =$	$g)-0,8\overline{3}=$
d) 0,8 =	$h) 2, \overline{6} =$

3. Ordena en forma decreciente los siguientes decimales:

a) 2,5 - 2,55 - 2 - 2,501 - 2,499 - 2,500	a)	2.5 -	2.55 -	2 – 2	.501 –	2.499 -	2.500
---	----	-------	--------	-------	--------	---------	-------

b) $0.3\overline{4} - 0.34 - 0.\overline{34} - 0.344 - 0.\overline{344} - 0.3$

П			
- 1			

c) $1,89 - 1,8\overline{9} - 1,\overline{89} - 1,9 - 1,8\overline{89} - 1,8 - 1,\overline{98} - 1,\overline{8} - 1,0\overline{89}$

